TAUP 2013 Asilomar, California 06-13 September 2013

SELF-INDUCED FLAVOR EVOLUTION OF SUPERNOVA NEUTRINOS WITHOUT AXIAL SYMMETRY

(Based on 1308.1402; 1308.5255)

(Alessandro MIRIZZI, Hamburg U.)

SNAP-SHOTS OF SN DENSITY PROFILES

Matter bkg potential

$$\lambda = \sqrt{2}G_F N_e \sim R^{-3}$$

• v-v interaction

$$\mu = \sqrt{2}G_{F}n_{V} \sim R^{-2}$$

Vacuum oscillation frequencies

$$\omega = \frac{\Delta m^2}{2E}$$

When $\mu > \lambda$, SN v oscillations dominated by v-v interactions

Collective flavor transitions at low-radii [O (10² - 10³ km)]

Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/0511275, Duan et al. astro-ph/0606616

DENSITY MATRIX FOR THE NEUTRINO ENSEMBLE

Diagonal elements related to flavor

$$\rho_{\alpha\alpha} = \frac{F_{\nu_{\alpha}}(E, r)}{F(E, r)}$$

 $\begin{array}{c|c} \rho_{e\tau} \\ \rho_{e\tau} \\ \rho_{\mu\tau} \end{array} \begin{array}{c} \text{Off-diagonal elements} \\ \text{responsible for flavor} \\ \text{conversions} \end{array}$

- In 2v scenario (Δm_{atm}^2 , θ_{13}). Decompose density matrix over Pauli matrices to get the "polarization" (Bloch) vector P. Survival probability Pee = 1/2(1+P₂). $\dot{P}_{\tau} = -1 \rightarrow \text{Pee} = 0$; $\dot{P}_{\tau} = 0 \rightarrow \text{Pee} = 1/2$ (flavor decoherence)
- The EOMs for the time evolution in a homogeneous medium are the Liouville equations (e.g. Early Universe)

$$i\partial_t \rho_{\mathbf{c}} = [H_{\mathbf{c}}, \rho_{\mathbf{c}}]$$

TAUP 2013 12 September 2013 Alessandro Mirizzi

MULTI-ANGLE (M.A.) EOMS FOR SN NEUTRINOS

Evolution in space for v's streaming from a SN core in quasi-stationary situation

$$i \vec{\nabla}_{p} \cdot \vec{\nabla}_{x} \rho_{p,x} = [H(\omega, \lambda, \rho_{p',x}), \rho_{p,x}]$$

Liouville operator for free streaming v

MULTI-ANGLE V-V HAMILTONIAN

$$H_{vv} = \sqrt{2}G_F \int d\vec{q} \left(1 - \vec{\mathbf{v}}_{p} \cdot \vec{\mathbf{v}}_{q}\right) \left(\rho_{q,x} - \overline{\rho}_{q,x}\right)$$

BULB MODEL

[see, e.g., Duan et al., astro-ph/0606616] > First large-scale multi-angle simulations

- Neutrinos are emitted uniformly and (half)-isotropically from the surface of a sphere (v-sphere), like in a blackbody.
- Physical conditions depend only on the the distance r from the center of the star (azimuthal symmetry)
- Only multi-zenith-angle (MZA) effects in terms of $u = \sin^2 \theta_R$
- Project evolution along radial direction (ODE problem) $\vec{\mathrm{v}}_p\cdot\vec{
 abla}_x o{\mathrm{v}_{\mathrm{r}}}d_r$

SINGLE-ZENITH-ANGLE (SZA) APPROXIMATION

Introduce an average of the MZA factor (1-cos θ_{pa}).

SZA v-v Hamiltonian

$$H_{\nu\nu} = \mu(r)(\rho - \bar{\rho})$$

$$\left| \mu(r) = \sqrt{2}G_F n_{\nu} \left\langle 1 - \cos \theta \right\rangle \right|$$

[Hannestad et al., astro-ph/0608695]

Toy model:

Monochromatic v beam.

Only ν_e and $\overline{\nu}_e$, with an excess of ν_e

- No effect in NH
- Complete self-induced conversions in IH. Bimodal instability

Alessandro Mirizzi

TAUP 2013

12 September 2013

MULTI-ZENITH-ANGLE DECOHERENCE

$$H_{vv} = \sqrt{2}G_F \int dq^{\Gamma} \left(1 - \cos\theta_{pq}\right) \left(\rho_{q,x} - \bar{\rho}_{q,x}\right)$$
Flux term

Symmetric v. v. systems decoheres in both hierarchies [Raffelt & Sigl, hep-ph/0701182]

Flux term does not vanish in a non-isotropic medium, like v streaming off a SN

Is the MZA decoherence relevant for SN neutrinos?

Alessandro Mirizzi TAUP 2013 12 September 2013

MZA EFFECTS FOR SN NEUTRINOS

$$\varepsilon = \frac{F(v_e) - F(\overline{v}_e)}{F(\overline{v}_e) - F(\overline{v}_x)}$$

Flavor asymmetry

[Esteban-Pretel et al.,0706.2498]

Large $v_{e}\overline{v_{e}}$ asymmetry required to suppress multi-angle decoherence

MULTI-AZIMUTHAL-ANGLE (MAA) INSTABILITY

 Self-induced flavor conversions are associated to an instability in the flavor space [Sawyer,0803.4319; Banerjee, Dighe & Raffelt, 1107.2308]

- Instability required to get started (exponential growth of the offdiagonal density matrix part)
 - The onset of the conversions can be found through a stability analysis of the linearized EOMs.

In [Raffelt, Sarikas, Seixas, 1305.7140] a stability analysis of the EOMs has been performed including the azimuthal angle ϕ of the v propagation and without enforcing axial symmetry.

A new multi-azimuthal-angle (MAA) instability has been found (also starting with a completely symmetric v emission)!!

In the unstable case, numerical simulations are mandatory.

Alessandro Mirizzi TAUP 2013 12 September 2013

MAA EFFECTS FOR SN NEUTRINOS

Alessandro Mirizzi

TAUP 2013

12 September 2013

TOY MODEL NEUTRINO SPECTRA

System of only ν_e and $\overline{\nu_e}$ with an excess of ν_e

Fermi-Dirac energy distributions with <E>=15 MeV

$$g_{\omega} \equiv \frac{|\Delta m^2|}{2\omega^2} \times \begin{cases} f_{\nu_e}(E_{\omega}) - f_{\nu_x}(E_{\omega}) & \text{for } \omega > 0\\ f_{\bar{\nu}_x}(E_{\omega}) - f_{\bar{\nu}_e}(E_{\omega}) & \text{for } \omega < 0 \end{cases}$$

$$E_{\omega} = \left| \frac{\Delta m^2}{2\omega} \right|$$

SPECTRAL SPLITS (ε=1.5)

[A.M., 1308.1402]

- Spectral swaps and splits in both NH (MAA) & IH (Bimodal)
- Antinu split smeared by MZA effects

SPECTRAL SPLITS (ε=0.5)

- Spectral swaps and splits IH (lead by the bimodal instability)
- Spectral swaps and splits NH washed out

SPECTRAL SPLITS (ε=0.3)

- Spectral swaps and splits IH strongly smeared (by MAA effects)
- Spectral swaps and splits IH washed out

SPECTRAL SPLITS FOR SN NEUTRINO FLUXES

(accretion phase)

$$F_{ve}$$
: $F_{\bar{v}e}$: F_{vx} = 2.4:1.6:1.0

$$\langle E_e \rangle = 12 \text{ MeV};$$

 $\langle E_e \rangle = 15 \text{ MeV};$

$$\langle E_x \rangle = 18 \text{ MeV}$$

$$\varepsilon = 1.34$$

- Spectral swaps and splits in both NH & IH!!
- In the axial symmetric case, only IH unstable

SPECTRAL SPLITS FOR SN NEUTRINO FLUXES

[A.M., 1308.5255]

- Nu fluxes present a spectral split at E= 12 MeV (fixed by lepton number conservation)
- lepton number conservation)
 Antinu fluxes are swapped

CONCLUSIONS

- A new multi-azimuthal-angle (MAA) instability emerges in the dense SN neutrino gas, removing the axial symmetry in the nu-nu interaction term
- For simple systems of only v_e and $\overline{v_e}$, with an excess of v_e , MAA effects can lead to spectral splits (for large flavor asymmetry) or flavor decoherence (for small flavor asymmetry) in NH.
- For SN ν spectra as in the accretion phase, MAA effects would induce swaps and splits in NH.
- A change of paradigm in the SN neutrino self-induced effects?

Still many open points (e.g. role of dense ordinary matter, initial nu angular distributions...)

LOT OF WORK TO BE DONE ... WAITING THE NEXT SN EXPLOSION!